Evaluate
\frac{501}{28}\approx 17.892857143
Factor
\frac{3 \cdot 167}{2 ^ {2} \cdot 7} = 17\frac{25}{28} = 17.892857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)501}\\\end{array}
Use the 1^{st} digit 5 from dividend 501
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)501}\\\end{array}
Since 5 is less than 28, use the next digit 0 from dividend 501 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)501}\\\end{array}
Use the 2^{nd} digit 0 from dividend 501
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)501}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}22\\\end{array}
Find closest multiple of 28 to 50. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 50 to get reminder 22. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)501}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}221\\\end{array}
Use the 3^{rd} digit 1 from dividend 501
\begin{array}{l}\phantom{28)}017\phantom{6}\\28\overline{)501}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}221\\\phantom{28)}\underline{\phantom{}196\phantom{}}\\\phantom{28)9}25\\\end{array}
Find closest multiple of 28 to 221. We see that 7 \times 28 = 196 is the nearest. Now subtract 196 from 221 to get reminder 25. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }25
Since 25 is less than 28, stop the division. The reminder is 25. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}