Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5000x^{2}+15x=16
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5000x^{2}+15x-16=16-16
Subtract 16 from both sides of the equation.
5000x^{2}+15x-16=0
Subtracting 16 from itself leaves 0.
x=\frac{-15±\sqrt{15^{2}-4\times 5000\left(-16\right)}}{2\times 5000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5000 for a, 15 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 5000\left(-16\right)}}{2\times 5000}
Square 15.
x=\frac{-15±\sqrt{225-20000\left(-16\right)}}{2\times 5000}
Multiply -4 times 5000.
x=\frac{-15±\sqrt{225+320000}}{2\times 5000}
Multiply -20000 times -16.
x=\frac{-15±\sqrt{320225}}{2\times 5000}
Add 225 to 320000.
x=\frac{-15±5\sqrt{12809}}{2\times 5000}
Take the square root of 320225.
x=\frac{-15±5\sqrt{12809}}{10000}
Multiply 2 times 5000.
x=\frac{5\sqrt{12809}-15}{10000}
Now solve the equation x=\frac{-15±5\sqrt{12809}}{10000} when ± is plus. Add -15 to 5\sqrt{12809}.
x=\frac{\sqrt{12809}-3}{2000}
Divide -15+5\sqrt{12809} by 10000.
x=\frac{-5\sqrt{12809}-15}{10000}
Now solve the equation x=\frac{-15±5\sqrt{12809}}{10000} when ± is minus. Subtract 5\sqrt{12809} from -15.
x=\frac{-\sqrt{12809}-3}{2000}
Divide -15-5\sqrt{12809} by 10000.
x=\frac{\sqrt{12809}-3}{2000} x=\frac{-\sqrt{12809}-3}{2000}
The equation is now solved.
5000x^{2}+15x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5000x^{2}+15x}{5000}=\frac{16}{5000}
Divide both sides by 5000.
x^{2}+\frac{15}{5000}x=\frac{16}{5000}
Dividing by 5000 undoes the multiplication by 5000.
x^{2}+\frac{3}{1000}x=\frac{16}{5000}
Reduce the fraction \frac{15}{5000} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{3}{1000}x=\frac{2}{625}
Reduce the fraction \frac{16}{5000} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{3}{1000}x+\left(\frac{3}{2000}\right)^{2}=\frac{2}{625}+\left(\frac{3}{2000}\right)^{2}
Divide \frac{3}{1000}, the coefficient of the x term, by 2 to get \frac{3}{2000}. Then add the square of \frac{3}{2000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{1000}x+\frac{9}{4000000}=\frac{2}{625}+\frac{9}{4000000}
Square \frac{3}{2000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{1000}x+\frac{9}{4000000}=\frac{12809}{4000000}
Add \frac{2}{625} to \frac{9}{4000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2000}\right)^{2}=\frac{12809}{4000000}
Factor x^{2}+\frac{3}{1000}x+\frac{9}{4000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2000}\right)^{2}}=\sqrt{\frac{12809}{4000000}}
Take the square root of both sides of the equation.
x+\frac{3}{2000}=\frac{\sqrt{12809}}{2000} x+\frac{3}{2000}=-\frac{\sqrt{12809}}{2000}
Simplify.
x=\frac{\sqrt{12809}-3}{2000} x=\frac{-\sqrt{12809}-3}{2000}
Subtract \frac{3}{2000} from both sides of the equation.