Solve for t
t=-\log_{2}\left(6\right)\approx -2.584962501
Solve for t (complex solution)
t=\frac{2\pi n_{1}i}{\ln(2)}-\log_{2}\left(6\right)
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
\frac{5000}{30000}=2^{t}
Divide both sides by 30000.
\frac{1}{6}=2^{t}
Reduce the fraction \frac{5000}{30000} to lowest terms by extracting and canceling out 5000.
2^{t}=\frac{1}{6}
Swap sides so that all variable terms are on the left hand side.
\log(2^{t})=\log(\frac{1}{6})
Take the logarithm of both sides of the equation.
t\log(2)=\log(\frac{1}{6})
The logarithm of a number raised to a power is the power times the logarithm of the number.
t=\frac{\log(\frac{1}{6})}{\log(2)}
Divide both sides by \log(2).
t=\log_{2}\left(\frac{1}{6}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}