Evaluate
\frac{25}{18}\approx 1.388888889
Factor
\frac{5 ^ {2}}{2 \cdot 3 ^ {2}} = 1\frac{7}{18} = 1.3888888888888888
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)500}\\\end{array}
Since 5 is less than 360, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)500}\\\end{array}
Since 50 is less than 360, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)500}\\\phantom{360)}\underline{\phantom{}360\phantom{}}\\\phantom{360)}140\\\end{array}
Find closest multiple of 360 to 500. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 500 to get reminder 140. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }140
Since 140 is less than 360, stop the division. The reminder is 140. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}