Evaluate
\frac{5}{3}\approx 1.666666667
Factor
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)500}\\\end{array}
Since 5 is less than 300, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)500}\\\end{array}
Since 50 is less than 300, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{300)}001\phantom{6}\\300\overline{)500}\\\phantom{300)}\underline{\phantom{}300\phantom{}}\\\phantom{300)}200\\\end{array}
Find closest multiple of 300 to 500. We see that 1 \times 300 = 300 is the nearest. Now subtract 300 from 500 to get reminder 200. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }200
Since 200 is less than 300, stop the division. The reminder is 200. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}