Solve for A_0
A_{0}=250000
Share
Copied to clipboard
500=A_{0}\times 0.5\times \frac{1}{250}
Reduce the fraction \frac{100}{25000} to lowest terms by extracting and canceling out 100.
500=A_{0}\times \frac{1}{2}\times \frac{1}{250}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
500=A_{0}\times \frac{1\times 1}{2\times 250}
Multiply \frac{1}{2} times \frac{1}{250} by multiplying numerator times numerator and denominator times denominator.
500=A_{0}\times \frac{1}{500}
Do the multiplications in the fraction \frac{1\times 1}{2\times 250}.
A_{0}\times \frac{1}{500}=500
Swap sides so that all variable terms are on the left hand side.
A_{0}=500\times 500
Multiply both sides by 500, the reciprocal of \frac{1}{500}.
A_{0}=250000
Multiply 500 and 500 to get 250000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}