Solve for p
p=\frac{2\left(p_{10}+25000\right)}{121}
Solve for p_10
p_{10}=\frac{121p}{2}-25000
Share
Copied to clipboard
50000=100p\left(1+\frac{10}{100}\right)^{2}-p_{10}\times 2
Multiply both sides of the equation by 100.
50000=100p\left(1+\frac{1}{10}\right)^{2}-p_{10}\times 2
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
50000=100p\times \left(\frac{11}{10}\right)^{2}-p_{10}\times 2
Add 1 and \frac{1}{10} to get \frac{11}{10}.
50000=100p\times \frac{121}{100}-p_{10}\times 2
Calculate \frac{11}{10} to the power of 2 and get \frac{121}{100}.
50000=121p-p_{10}\times 2
Multiply 100 and \frac{121}{100} to get 121.
121p-p_{10}\times 2=50000
Swap sides so that all variable terms are on the left hand side.
121p=50000+p_{10}\times 2
Add p_{10}\times 2 to both sides.
121p=2p_{10}+50000
The equation is in standard form.
\frac{121p}{121}=\frac{2p_{10}+50000}{121}
Divide both sides by 121.
p=\frac{2p_{10}+50000}{121}
Dividing by 121 undoes the multiplication by 121.
50000=100p\left(1+\frac{10}{100}\right)^{2}-p_{10}\times 2
Multiply both sides of the equation by 100.
50000=100p\left(1+\frac{1}{10}\right)^{2}-p_{10}\times 2
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
50000=100p\times \left(\frac{11}{10}\right)^{2}-p_{10}\times 2
Add 1 and \frac{1}{10} to get \frac{11}{10}.
50000=100p\times \frac{121}{100}-p_{10}\times 2
Calculate \frac{11}{10} to the power of 2 and get \frac{121}{100}.
50000=121p-p_{10}\times 2
Multiply 100 and \frac{121}{100} to get 121.
121p-p_{10}\times 2=50000
Swap sides so that all variable terms are on the left hand side.
-p_{10}\times 2=50000-121p
Subtract 121p from both sides.
-2p_{10}=50000-121p
Multiply -1 and 2 to get -2.
\frac{-2p_{10}}{-2}=\frac{50000-121p}{-2}
Divide both sides by -2.
p_{10}=\frac{50000-121p}{-2}
Dividing by -2 undoes the multiplication by -2.
p_{10}=\frac{121p}{2}-25000
Divide 50000-121p by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}