Solve for x
x=7
Graph
Share
Copied to clipboard
50+97\times \frac{1}{2}-x\times \frac{1}{2}=95
Use the distributive property to multiply 97-x by \frac{1}{2}.
50+\frac{97}{2}-x\times \frac{1}{2}=95
Multiply 97 and \frac{1}{2} to get \frac{97}{2}.
50+\frac{97}{2}-\frac{1}{2}x=95
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
\frac{100}{2}+\frac{97}{2}-\frac{1}{2}x=95
Convert 50 to fraction \frac{100}{2}.
\frac{100+97}{2}-\frac{1}{2}x=95
Since \frac{100}{2} and \frac{97}{2} have the same denominator, add them by adding their numerators.
\frac{197}{2}-\frac{1}{2}x=95
Add 100 and 97 to get 197.
-\frac{1}{2}x=95-\frac{197}{2}
Subtract \frac{197}{2} from both sides.
-\frac{1}{2}x=\frac{190}{2}-\frac{197}{2}
Convert 95 to fraction \frac{190}{2}.
-\frac{1}{2}x=\frac{190-197}{2}
Since \frac{190}{2} and \frac{197}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}x=-\frac{7}{2}
Subtract 197 from 190 to get -7.
x=-\frac{7}{2}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x=\frac{-7\left(-2\right)}{2}
Express -\frac{7}{2}\left(-2\right) as a single fraction.
x=\frac{14}{2}
Multiply -7 and -2 to get 14.
x=7
Divide 14 by 2 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}