Evaluate
\frac{185}{2}=92.5
Factor
\frac{5 \cdot 37}{2} = 92\frac{1}{2} = 92.5
Share
Copied to clipboard
50+\frac{85}{20}\times 10
Add 50 and 35 to get 85.
50+\frac{17}{4}\times 10
Reduce the fraction \frac{85}{20} to lowest terms by extracting and canceling out 5.
50+\frac{17\times 10}{4}
Express \frac{17}{4}\times 10 as a single fraction.
50+\frac{170}{4}
Multiply 17 and 10 to get 170.
50+\frac{85}{2}
Reduce the fraction \frac{170}{4} to lowest terms by extracting and canceling out 2.
\frac{100}{2}+\frac{85}{2}
Convert 50 to fraction \frac{100}{2}.
\frac{100+85}{2}
Since \frac{100}{2} and \frac{85}{2} have the same denominator, add them by adding their numerators.
\frac{185}{2}
Add 100 and 85 to get 185.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}