Factor
\left(10r-1\right)\left(5r+3\right)
Evaluate
\left(10r-1\right)\left(5r+3\right)
Share
Copied to clipboard
50r^{2}+25r-3
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=25 ab=50\left(-3\right)=-150
Factor the expression by grouping. First, the expression needs to be rewritten as 50r^{2}+ar+br-3. To find a and b, set up a system to be solved.
-1,150 -2,75 -3,50 -5,30 -6,25 -10,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -150.
-1+150=149 -2+75=73 -3+50=47 -5+30=25 -6+25=19 -10+15=5
Calculate the sum for each pair.
a=-5 b=30
The solution is the pair that gives sum 25.
\left(50r^{2}-5r\right)+\left(30r-3\right)
Rewrite 50r^{2}+25r-3 as \left(50r^{2}-5r\right)+\left(30r-3\right).
5r\left(10r-1\right)+3\left(10r-1\right)
Factor out 5r in the first and 3 in the second group.
\left(10r-1\right)\left(5r+3\right)
Factor out common term 10r-1 by using distributive property.
50r^{2}+25r-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
r=\frac{-25±\sqrt{25^{2}-4\times 50\left(-3\right)}}{2\times 50}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-25±\sqrt{625-4\times 50\left(-3\right)}}{2\times 50}
Square 25.
r=\frac{-25±\sqrt{625-200\left(-3\right)}}{2\times 50}
Multiply -4 times 50.
r=\frac{-25±\sqrt{625+600}}{2\times 50}
Multiply -200 times -3.
r=\frac{-25±\sqrt{1225}}{2\times 50}
Add 625 to 600.
r=\frac{-25±35}{2\times 50}
Take the square root of 1225.
r=\frac{-25±35}{100}
Multiply 2 times 50.
r=\frac{10}{100}
Now solve the equation r=\frac{-25±35}{100} when ± is plus. Add -25 to 35.
r=\frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
r=-\frac{60}{100}
Now solve the equation r=\frac{-25±35}{100} when ± is minus. Subtract 35 from -25.
r=-\frac{3}{5}
Reduce the fraction \frac{-60}{100} to lowest terms by extracting and canceling out 20.
50r^{2}+25r-3=50\left(r-\frac{1}{10}\right)\left(r-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{10} for x_{1} and -\frac{3}{5} for x_{2}.
50r^{2}+25r-3=50\left(r-\frac{1}{10}\right)\left(r+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
50r^{2}+25r-3=50\times \frac{10r-1}{10}\left(r+\frac{3}{5}\right)
Subtract \frac{1}{10} from r by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
50r^{2}+25r-3=50\times \frac{10r-1}{10}\times \frac{5r+3}{5}
Add \frac{3}{5} to r by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
50r^{2}+25r-3=50\times \frac{\left(10r-1\right)\left(5r+3\right)}{10\times 5}
Multiply \frac{10r-1}{10} times \frac{5r+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
50r^{2}+25r-3=50\times \frac{\left(10r-1\right)\left(5r+3\right)}{50}
Multiply 10 times 5.
50r^{2}+25r-3=\left(10r-1\right)\left(5r+3\right)
Cancel out 50, the greatest common factor in 50 and 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}