Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(25b^{4}+100b^{3}-b^{2}-4b\right)
Factor out 2.
b\left(25b^{3}+100b^{2}-b-4\right)
Consider 25b^{4}+100b^{3}-b^{2}-4b. Factor out b.
25b^{2}\left(b+4\right)-\left(b+4\right)
Consider 25b^{3}+100b^{2}-b-4. Do the grouping 25b^{3}+100b^{2}-b-4=\left(25b^{3}+100b^{2}\right)+\left(-b-4\right), and factor out 25b^{2} in the first and -1 in the second group.
\left(b+4\right)\left(25b^{2}-1\right)
Factor out common term b+4 by using distributive property.
\left(5b-1\right)\left(5b+1\right)
Consider 25b^{2}-1. Rewrite 25b^{2}-1 as \left(5b\right)^{2}-1^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
2b\left(b+4\right)\left(5b-1\right)\left(5b+1\right)
Rewrite the complete factored expression.