Solve for n
n=0.04
Share
Copied to clipboard
n+0.2=\frac{12}{50}
Divide both sides by 50.
n+0.2=\frac{6}{25}
Reduce the fraction \frac{12}{50} to lowest terms by extracting and canceling out 2.
n=\frac{6}{25}-0.2
Subtract 0.2 from both sides.
n=\frac{6}{25}-\frac{1}{5}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
n=\frac{6}{25}-\frac{5}{25}
Least common multiple of 25 and 5 is 25. Convert \frac{6}{25} and \frac{1}{5} to fractions with denominator 25.
n=\frac{6-5}{25}
Since \frac{6}{25} and \frac{5}{25} have the same denominator, subtract them by subtracting their numerators.
n=\frac{1}{25}
Subtract 5 from 6 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}