Solve for x
x=5\sqrt{43}-26\approx 6.787192622
x=-5\sqrt{43}-26\approx -58.787192622
Graph
Quiz
Quadratic Equation
5 problems similar to:
50 \left( 1+x \right) + { \left(1+x \right) }^{ 2 } =450
Share
Copied to clipboard
50+50x+\left(1+x\right)^{2}=450
Use the distributive property to multiply 50 by 1+x.
50+50x+1+2x+x^{2}=450
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
51+50x+2x+x^{2}=450
Add 50 and 1 to get 51.
51+52x+x^{2}=450
Combine 50x and 2x to get 52x.
51+52x+x^{2}-450=0
Subtract 450 from both sides.
-399+52x+x^{2}=0
Subtract 450 from 51 to get -399.
x^{2}+52x-399=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-52±\sqrt{52^{2}-4\left(-399\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 52 for b, and -399 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-399\right)}}{2}
Square 52.
x=\frac{-52±\sqrt{2704+1596}}{2}
Multiply -4 times -399.
x=\frac{-52±\sqrt{4300}}{2}
Add 2704 to 1596.
x=\frac{-52±10\sqrt{43}}{2}
Take the square root of 4300.
x=\frac{10\sqrt{43}-52}{2}
Now solve the equation x=\frac{-52±10\sqrt{43}}{2} when ± is plus. Add -52 to 10\sqrt{43}.
x=5\sqrt{43}-26
Divide -52+10\sqrt{43} by 2.
x=\frac{-10\sqrt{43}-52}{2}
Now solve the equation x=\frac{-52±10\sqrt{43}}{2} when ± is minus. Subtract 10\sqrt{43} from -52.
x=-5\sqrt{43}-26
Divide -52-10\sqrt{43} by 2.
x=5\sqrt{43}-26 x=-5\sqrt{43}-26
The equation is now solved.
50+50x+\left(1+x\right)^{2}=450
Use the distributive property to multiply 50 by 1+x.
50+50x+1+2x+x^{2}=450
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
51+50x+2x+x^{2}=450
Add 50 and 1 to get 51.
51+52x+x^{2}=450
Combine 50x and 2x to get 52x.
52x+x^{2}=450-51
Subtract 51 from both sides.
52x+x^{2}=399
Subtract 51 from 450 to get 399.
x^{2}+52x=399
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+52x+26^{2}=399+26^{2}
Divide 52, the coefficient of the x term, by 2 to get 26. Then add the square of 26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+52x+676=399+676
Square 26.
x^{2}+52x+676=1075
Add 399 to 676.
\left(x+26\right)^{2}=1075
Factor x^{2}+52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{1075}
Take the square root of both sides of the equation.
x+26=5\sqrt{43} x+26=-5\sqrt{43}
Simplify.
x=5\sqrt{43}-26 x=-5\sqrt{43}-26
Subtract 26 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}