Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

50+50x+\left(1+x\right)^{2}=450
Use the distributive property to multiply 50 by 1+x.
50+50x+1+2x+x^{2}=450
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
51+50x+2x+x^{2}=450
Add 50 and 1 to get 51.
51+52x+x^{2}=450
Combine 50x and 2x to get 52x.
51+52x+x^{2}-450=0
Subtract 450 from both sides.
-399+52x+x^{2}=0
Subtract 450 from 51 to get -399.
x^{2}+52x-399=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-52±\sqrt{52^{2}-4\left(-399\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 52 for b, and -399 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-399\right)}}{2}
Square 52.
x=\frac{-52±\sqrt{2704+1596}}{2}
Multiply -4 times -399.
x=\frac{-52±\sqrt{4300}}{2}
Add 2704 to 1596.
x=\frac{-52±10\sqrt{43}}{2}
Take the square root of 4300.
x=\frac{10\sqrt{43}-52}{2}
Now solve the equation x=\frac{-52±10\sqrt{43}}{2} when ± is plus. Add -52 to 10\sqrt{43}.
x=5\sqrt{43}-26
Divide -52+10\sqrt{43} by 2.
x=\frac{-10\sqrt{43}-52}{2}
Now solve the equation x=\frac{-52±10\sqrt{43}}{2} when ± is minus. Subtract 10\sqrt{43} from -52.
x=-5\sqrt{43}-26
Divide -52-10\sqrt{43} by 2.
x=5\sqrt{43}-26 x=-5\sqrt{43}-26
The equation is now solved.
50+50x+\left(1+x\right)^{2}=450
Use the distributive property to multiply 50 by 1+x.
50+50x+1+2x+x^{2}=450
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
51+50x+2x+x^{2}=450
Add 50 and 1 to get 51.
51+52x+x^{2}=450
Combine 50x and 2x to get 52x.
52x+x^{2}=450-51
Subtract 51 from both sides.
52x+x^{2}=399
Subtract 51 from 450 to get 399.
x^{2}+52x=399
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+52x+26^{2}=399+26^{2}
Divide 52, the coefficient of the x term, by 2 to get 26. Then add the square of 26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+52x+676=399+676
Square 26.
x^{2}+52x+676=1075
Add 399 to 676.
\left(x+26\right)^{2}=1075
Factor x^{2}+52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{1075}
Take the square root of both sides of the equation.
x+26=5\sqrt{43} x+26=-5\sqrt{43}
Simplify.
x=5\sqrt{43}-26 x=-5\sqrt{43}-26
Subtract 26 from both sides of the equation.