Solve for G
G=\frac{1}{dp}
d\neq 0\text{ and }p\neq 0
Solve for d
d=\frac{1}{Gp}
G\neq 0\text{ and }p\neq 0
Share
Copied to clipboard
50\times 1.5\times 1440=108000Gpd
Multiply both sides of the equation by 150000.
75\times 1440=108000Gpd
Multiply 50 and 1.5 to get 75.
108000=108000Gpd
Multiply 75 and 1440 to get 108000.
108000Gpd=108000
Swap sides so that all variable terms are on the left hand side.
108000dpG=108000
The equation is in standard form.
\frac{108000dpG}{108000dp}=\frac{108000}{108000dp}
Divide both sides by 108000pd.
G=\frac{108000}{108000dp}
Dividing by 108000pd undoes the multiplication by 108000pd.
G=\frac{1}{dp}
Divide 108000 by 108000pd.
50\times 1.5\times 1440=108000Gpd
Multiply both sides of the equation by 150000.
75\times 1440=108000Gpd
Multiply 50 and 1.5 to get 75.
108000=108000Gpd
Multiply 75 and 1440 to get 108000.
108000Gpd=108000
Swap sides so that all variable terms are on the left hand side.
\frac{108000Gpd}{108000Gp}=\frac{108000}{108000Gp}
Divide both sides by 108000Gp.
d=\frac{108000}{108000Gp}
Dividing by 108000Gp undoes the multiplication by 108000Gp.
d=\frac{1}{Gp}
Divide 108000 by 108000Gp.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}