Solve for t
t=2
t = \frac{28}{13} = 2\frac{2}{13} \approx 2.153846154
Share
Copied to clipboard
2500=\left(90-30t\right)^{2}+\left(20t\right)^{2}
Calculate 50 to the power of 2 and get 2500.
2500=8100-5400t+900t^{2}+\left(20t\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(90-30t\right)^{2}.
2500=8100-5400t+900t^{2}+20^{2}t^{2}
Expand \left(20t\right)^{2}.
2500=8100-5400t+900t^{2}+400t^{2}
Calculate 20 to the power of 2 and get 400.
2500=8100-5400t+1300t^{2}
Combine 900t^{2} and 400t^{2} to get 1300t^{2}.
8100-5400t+1300t^{2}=2500
Swap sides so that all variable terms are on the left hand side.
8100-5400t+1300t^{2}-2500=0
Subtract 2500 from both sides.
5600-5400t+1300t^{2}=0
Subtract 2500 from 8100 to get 5600.
1300t^{2}-5400t+5600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-5400\right)±\sqrt{\left(-5400\right)^{2}-4\times 1300\times 5600}}{2\times 1300}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1300 for a, -5400 for b, and 5600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-5400\right)±\sqrt{29160000-4\times 1300\times 5600}}{2\times 1300}
Square -5400.
t=\frac{-\left(-5400\right)±\sqrt{29160000-5200\times 5600}}{2\times 1300}
Multiply -4 times 1300.
t=\frac{-\left(-5400\right)±\sqrt{29160000-29120000}}{2\times 1300}
Multiply -5200 times 5600.
t=\frac{-\left(-5400\right)±\sqrt{40000}}{2\times 1300}
Add 29160000 to -29120000.
t=\frac{-\left(-5400\right)±200}{2\times 1300}
Take the square root of 40000.
t=\frac{5400±200}{2\times 1300}
The opposite of -5400 is 5400.
t=\frac{5400±200}{2600}
Multiply 2 times 1300.
t=\frac{5600}{2600}
Now solve the equation t=\frac{5400±200}{2600} when ± is plus. Add 5400 to 200.
t=\frac{28}{13}
Reduce the fraction \frac{5600}{2600} to lowest terms by extracting and canceling out 200.
t=\frac{5200}{2600}
Now solve the equation t=\frac{5400±200}{2600} when ± is minus. Subtract 200 from 5400.
t=2
Divide 5200 by 2600.
t=\frac{28}{13} t=2
The equation is now solved.
2500=\left(90-30t\right)^{2}+\left(20t\right)^{2}
Calculate 50 to the power of 2 and get 2500.
2500=8100-5400t+900t^{2}+\left(20t\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(90-30t\right)^{2}.
2500=8100-5400t+900t^{2}+20^{2}t^{2}
Expand \left(20t\right)^{2}.
2500=8100-5400t+900t^{2}+400t^{2}
Calculate 20 to the power of 2 and get 400.
2500=8100-5400t+1300t^{2}
Combine 900t^{2} and 400t^{2} to get 1300t^{2}.
8100-5400t+1300t^{2}=2500
Swap sides so that all variable terms are on the left hand side.
-5400t+1300t^{2}=2500-8100
Subtract 8100 from both sides.
-5400t+1300t^{2}=-5600
Subtract 8100 from 2500 to get -5600.
1300t^{2}-5400t=-5600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1300t^{2}-5400t}{1300}=-\frac{5600}{1300}
Divide both sides by 1300.
t^{2}+\left(-\frac{5400}{1300}\right)t=-\frac{5600}{1300}
Dividing by 1300 undoes the multiplication by 1300.
t^{2}-\frac{54}{13}t=-\frac{5600}{1300}
Reduce the fraction \frac{-5400}{1300} to lowest terms by extracting and canceling out 100.
t^{2}-\frac{54}{13}t=-\frac{56}{13}
Reduce the fraction \frac{-5600}{1300} to lowest terms by extracting and canceling out 100.
t^{2}-\frac{54}{13}t+\left(-\frac{27}{13}\right)^{2}=-\frac{56}{13}+\left(-\frac{27}{13}\right)^{2}
Divide -\frac{54}{13}, the coefficient of the x term, by 2 to get -\frac{27}{13}. Then add the square of -\frac{27}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{54}{13}t+\frac{729}{169}=-\frac{56}{13}+\frac{729}{169}
Square -\frac{27}{13} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{54}{13}t+\frac{729}{169}=\frac{1}{169}
Add -\frac{56}{13} to \frac{729}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{27}{13}\right)^{2}=\frac{1}{169}
Factor t^{2}-\frac{54}{13}t+\frac{729}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{27}{13}\right)^{2}}=\sqrt{\frac{1}{169}}
Take the square root of both sides of the equation.
t-\frac{27}{13}=\frac{1}{13} t-\frac{27}{13}=-\frac{1}{13}
Simplify.
t=\frac{28}{13} t=2
Add \frac{27}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}