Solve for x (complex solution)
x=\frac{i\times 5\sqrt{4711}}{476}+\frac{5}{68}\approx 0.073529412+0.720974001i
x=-\frac{i\times 5\sqrt{4711}}{476}+\frac{5}{68}\approx 0.073529412-0.720974001i
Graph
Quiz
Quadratic Equation
5 problems similar to:
50 = 0.35 \times 40 x ( 1 - 0.85 \frac { 40 x } { 5 } )
Share
Copied to clipboard
250=1.75\times 40x\left(1-0.85\times \frac{40x}{5}\right)
Multiply both sides of the equation by 5.
250=70x\left(1-0.85\times \frac{40x}{5}\right)
Multiply 1.75 and 40 to get 70.
250=70x\left(1-0.85\times 8x\right)
Divide 40x by 5 to get 8x.
250=70x\left(1-6.8x\right)
Multiply 0.85 and 8 to get 6.8.
250=70x-476x^{2}
Use the distributive property to multiply 70x by 1-6.8x.
70x-476x^{2}=250
Swap sides so that all variable terms are on the left hand side.
70x-476x^{2}-250=0
Subtract 250 from both sides.
-476x^{2}+70x-250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{70^{2}-4\left(-476\right)\left(-250\right)}}{2\left(-476\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -476 for a, 70 for b, and -250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\left(-476\right)\left(-250\right)}}{2\left(-476\right)}
Square 70.
x=\frac{-70±\sqrt{4900+1904\left(-250\right)}}{2\left(-476\right)}
Multiply -4 times -476.
x=\frac{-70±\sqrt{4900-476000}}{2\left(-476\right)}
Multiply 1904 times -250.
x=\frac{-70±\sqrt{-471100}}{2\left(-476\right)}
Add 4900 to -476000.
x=\frac{-70±10\sqrt{4711}i}{2\left(-476\right)}
Take the square root of -471100.
x=\frac{-70±10\sqrt{4711}i}{-952}
Multiply 2 times -476.
x=\frac{-70+10\sqrt{4711}i}{-952}
Now solve the equation x=\frac{-70±10\sqrt{4711}i}{-952} when ± is plus. Add -70 to 10i\sqrt{4711}.
x=-\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Divide -70+10i\sqrt{4711} by -952.
x=\frac{-10\sqrt{4711}i-70}{-952}
Now solve the equation x=\frac{-70±10\sqrt{4711}i}{-952} when ± is minus. Subtract 10i\sqrt{4711} from -70.
x=\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Divide -70-10i\sqrt{4711} by -952.
x=-\frac{5\sqrt{4711}i}{476}+\frac{5}{68} x=\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
The equation is now solved.
250=1.75\times 40x\left(1-0.85\times \frac{40x}{5}\right)
Multiply both sides of the equation by 5.
250=70x\left(1-0.85\times \frac{40x}{5}\right)
Multiply 1.75 and 40 to get 70.
250=70x\left(1-0.85\times 8x\right)
Divide 40x by 5 to get 8x.
250=70x\left(1-6.8x\right)
Multiply 0.85 and 8 to get 6.8.
250=70x-476x^{2}
Use the distributive property to multiply 70x by 1-6.8x.
70x-476x^{2}=250
Swap sides so that all variable terms are on the left hand side.
-476x^{2}+70x=250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-476x^{2}+70x}{-476}=\frac{250}{-476}
Divide both sides by -476.
x^{2}+\frac{70}{-476}x=\frac{250}{-476}
Dividing by -476 undoes the multiplication by -476.
x^{2}-\frac{5}{34}x=\frac{250}{-476}
Reduce the fraction \frac{70}{-476} to lowest terms by extracting and canceling out 14.
x^{2}-\frac{5}{34}x=-\frac{125}{238}
Reduce the fraction \frac{250}{-476} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{34}x+\left(-\frac{5}{68}\right)^{2}=-\frac{125}{238}+\left(-\frac{5}{68}\right)^{2}
Divide -\frac{5}{34}, the coefficient of the x term, by 2 to get -\frac{5}{68}. Then add the square of -\frac{5}{68} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{34}x+\frac{25}{4624}=-\frac{125}{238}+\frac{25}{4624}
Square -\frac{5}{68} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{34}x+\frac{25}{4624}=-\frac{16825}{32368}
Add -\frac{125}{238} to \frac{25}{4624} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{68}\right)^{2}=-\frac{16825}{32368}
Factor x^{2}-\frac{5}{34}x+\frac{25}{4624}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{68}\right)^{2}}=\sqrt{-\frac{16825}{32368}}
Take the square root of both sides of the equation.
x-\frac{5}{68}=\frac{5\sqrt{4711}i}{476} x-\frac{5}{68}=-\frac{5\sqrt{4711}i}{476}
Simplify.
x=\frac{5\sqrt{4711}i}{476}+\frac{5}{68} x=-\frac{5\sqrt{4711}i}{476}+\frac{5}{68}
Add \frac{5}{68} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}