Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+35x+50
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=35 ab=6\times 50=300
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+50. To find a and b, set up a system to be solved.
1,300 2,150 3,100 4,75 5,60 6,50 10,30 12,25 15,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 300.
1+300=301 2+150=152 3+100=103 4+75=79 5+60=65 6+50=56 10+30=40 12+25=37 15+20=35
Calculate the sum for each pair.
a=15 b=20
The solution is the pair that gives sum 35.
\left(6x^{2}+15x\right)+\left(20x+50\right)
Rewrite 6x^{2}+35x+50 as \left(6x^{2}+15x\right)+\left(20x+50\right).
3x\left(2x+5\right)+10\left(2x+5\right)
Factor out 3x in the first and 10 in the second group.
\left(2x+5\right)\left(3x+10\right)
Factor out common term 2x+5 by using distributive property.
6x^{2}+35x+50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-35±\sqrt{35^{2}-4\times 6\times 50}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{1225-4\times 6\times 50}}{2\times 6}
Square 35.
x=\frac{-35±\sqrt{1225-24\times 50}}{2\times 6}
Multiply -4 times 6.
x=\frac{-35±\sqrt{1225-1200}}{2\times 6}
Multiply -24 times 50.
x=\frac{-35±\sqrt{25}}{2\times 6}
Add 1225 to -1200.
x=\frac{-35±5}{2\times 6}
Take the square root of 25.
x=\frac{-35±5}{12}
Multiply 2 times 6.
x=-\frac{30}{12}
Now solve the equation x=\frac{-35±5}{12} when ± is plus. Add -35 to 5.
x=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{40}{12}
Now solve the equation x=\frac{-35±5}{12} when ± is minus. Subtract 5 from -35.
x=-\frac{10}{3}
Reduce the fraction \frac{-40}{12} to lowest terms by extracting and canceling out 4.
6x^{2}+35x+50=6\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{10}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{2} for x_{1} and -\frac{10}{3} for x_{2}.
6x^{2}+35x+50=6\left(x+\frac{5}{2}\right)\left(x+\frac{10}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}+35x+50=6\times \frac{2x+5}{2}\left(x+\frac{10}{3}\right)
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+35x+50=6\times \frac{2x+5}{2}\times \frac{3x+10}{3}
Add \frac{10}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+35x+50=6\times \frac{\left(2x+5\right)\left(3x+10\right)}{2\times 3}
Multiply \frac{2x+5}{2} times \frac{3x+10}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6x^{2}+35x+50=6\times \frac{\left(2x+5\right)\left(3x+10\right)}{6}
Multiply 2 times 3.
6x^{2}+35x+50=\left(2x+5\right)\left(3x+10\right)
Cancel out 6, the greatest common factor in 6 and 6.