Evaluate
\frac{133}{12}\approx 11.083333333
Factor
\frac{7 \cdot 19}{3 \cdot 2 ^ {2}} = 11\frac{1}{12} = 11.083333333333334
Share
Copied to clipboard
\frac{11}{2}-\frac{7}{4}-\left(-\frac{7\times 3+1}{3}\right)
Convert decimal number 5.5 to fraction \frac{55}{10}. Reduce the fraction \frac{55}{10} to lowest terms by extracting and canceling out 5.
\frac{22}{4}-\frac{7}{4}-\left(-\frac{7\times 3+1}{3}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{11}{2} and \frac{7}{4} to fractions with denominator 4.
\frac{22-7}{4}-\left(-\frac{7\times 3+1}{3}\right)
Since \frac{22}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{4}-\left(-\frac{7\times 3+1}{3}\right)
Subtract 7 from 22 to get 15.
\frac{15}{4}-\left(-\frac{21+1}{3}\right)
Multiply 7 and 3 to get 21.
\frac{15}{4}-\left(-\frac{22}{3}\right)
Add 21 and 1 to get 22.
\frac{15}{4}+\frac{22}{3}
The opposite of -\frac{22}{3} is \frac{22}{3}.
\frac{45}{12}+\frac{88}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{15}{4} and \frac{22}{3} to fractions with denominator 12.
\frac{45+88}{12}
Since \frac{45}{12} and \frac{88}{12} have the same denominator, add them by adding their numerators.
\frac{133}{12}
Add 45 and 88 to get 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}