Solve for t
t=2
Share
Copied to clipboard
15-\left(2t-3\right)=3\left(t+1\right)^{2}-\left(3t^{2}+1\right)
Multiply both sides of the equation by 3.
15-2t+3=3\left(t+1\right)^{2}-\left(3t^{2}+1\right)
To find the opposite of 2t-3, find the opposite of each term.
18-2t=3\left(t+1\right)^{2}-\left(3t^{2}+1\right)
Add 15 and 3 to get 18.
18-2t=3\left(t^{2}+2t+1\right)-\left(3t^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+1\right)^{2}.
18-2t=3t^{2}+6t+3-\left(3t^{2}+1\right)
Use the distributive property to multiply 3 by t^{2}+2t+1.
18-2t=3t^{2}+6t+3-3t^{2}-1
To find the opposite of 3t^{2}+1, find the opposite of each term.
18-2t=6t+3-1
Combine 3t^{2} and -3t^{2} to get 0.
18-2t=6t+2
Subtract 1 from 3 to get 2.
18-2t-6t=2
Subtract 6t from both sides.
18-8t=2
Combine -2t and -6t to get -8t.
-8t=2-18
Subtract 18 from both sides.
-8t=-16
Subtract 18 from 2 to get -16.
t=\frac{-16}{-8}
Divide both sides by -8.
t=2
Divide -16 by -8 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}