Solve for x
x = -\frac{36}{25} = -1\frac{11}{25} = -1.44
Graph
Share
Copied to clipboard
60\left(\frac{x}{4}+\frac{x}{3}\right)-36x-12\left(2x+1\right)=24
Multiply both sides of the equation by 12, the least common multiple of 4,3.
60\times \frac{7}{12}x-36x-12\left(2x+1\right)=24
Combine \frac{x}{4} and \frac{x}{3} to get \frac{7}{12}x.
\frac{60\times 7}{12}x-36x-12\left(2x+1\right)=24
Express 60\times \frac{7}{12} as a single fraction.
\frac{420}{12}x-36x-12\left(2x+1\right)=24
Multiply 60 and 7 to get 420.
35x-36x-12\left(2x+1\right)=24
Divide 420 by 12 to get 35.
-x-12\left(2x+1\right)=24
Combine 35x and -36x to get -x.
-x-24x-12=24
Use the distributive property to multiply -12 by 2x+1.
-25x-12=24
Combine -x and -24x to get -25x.
-25x=24+12
Add 12 to both sides.
-25x=36
Add 24 and 12 to get 36.
x=\frac{36}{-25}
Divide both sides by -25.
x=-\frac{36}{25}
Fraction \frac{36}{-25} can be rewritten as -\frac{36}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}