Solve for x
x=\frac{2\sqrt{5}-3}{5}\approx 0.294427191
Graph
Share
Copied to clipboard
50\left(\frac{x}{2}+\frac{1}{5}\right)=5\left(-1\right)+10\sqrt{5}
Multiply both sides of the equation by 10, the least common multiple of 2,5.
50\left(\frac{5x}{10}+\frac{2}{10}\right)=5\left(-1\right)+10\sqrt{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 5 is 10. Multiply \frac{x}{2} times \frac{5}{5}. Multiply \frac{1}{5} times \frac{2}{2}.
50\times \frac{5x+2}{10}=5\left(-1\right)+10\sqrt{5}
Since \frac{5x}{10} and \frac{2}{10} have the same denominator, add them by adding their numerators.
5\left(5x+2\right)=5\left(-1\right)+10\sqrt{5}
Cancel out 10, the greatest common factor in 50 and 10.
25x+10=5\left(-1\right)+10\sqrt{5}
Use the distributive property to multiply 5 by 5x+2.
25x+10=-5+10\sqrt{5}
Multiply 5 and -1 to get -5.
25x=-5+10\sqrt{5}-10
Subtract 10 from both sides.
25x=-15+10\sqrt{5}
Subtract 10 from -5 to get -15.
25x=10\sqrt{5}-15
The equation is in standard form.
\frac{25x}{25}=\frac{10\sqrt{5}-15}{25}
Divide both sides by 25.
x=\frac{10\sqrt{5}-15}{25}
Dividing by 25 undoes the multiplication by 25.
x=\frac{2\sqrt{5}-3}{5}
Divide -15+10\sqrt{5} by 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}