Solve for x
x=\frac{36}{71}\approx 0.507042254
Graph
Share
Copied to clipboard
\frac{5}{360}=\frac{x}{x+36}
Divide both sides by 360.
\frac{1}{72}=\frac{x}{x+36}
Reduce the fraction \frac{5}{360} to lowest terms by extracting and canceling out 5.
x+36=72x
Variable x cannot be equal to -36 since division by zero is not defined. Multiply both sides of the equation by 72\left(x+36\right), the least common multiple of 72,x+36.
x+36-72x=0
Subtract 72x from both sides.
-71x+36=0
Combine x and -72x to get -71x.
-71x=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-36}{-71}
Divide both sides by -71.
x=\frac{36}{71}
Fraction \frac{-36}{-71} can be simplified to \frac{36}{71} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}