Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5+15-\left(x-5\right)=\sqrt{x^{2}+15^{2}}
Subtract x-5 from both sides of the equation.
20-\left(x-5\right)=\sqrt{x^{2}+15^{2}}
Add 5 and 15 to get 20.
20-x+5=\sqrt{x^{2}+15^{2}}
To find the opposite of x-5, find the opposite of each term.
25-x=\sqrt{x^{2}+15^{2}}
Add 20 and 5 to get 25.
25-x=\sqrt{x^{2}+225}
Calculate 15 to the power of 2 and get 225.
\left(25-x\right)^{2}=\left(\sqrt{x^{2}+225}\right)^{2}
Square both sides of the equation.
625-50x+x^{2}=\left(\sqrt{x^{2}+225}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(25-x\right)^{2}.
625-50x+x^{2}=x^{2}+225
Calculate \sqrt{x^{2}+225} to the power of 2 and get x^{2}+225.
625-50x+x^{2}-x^{2}=225
Subtract x^{2} from both sides.
625-50x=225
Combine x^{2} and -x^{2} to get 0.
-50x=225-625
Subtract 625 from both sides.
-50x=-400
Subtract 625 from 225 to get -400.
x=\frac{-400}{-50}
Divide both sides by -50.
x=8
Divide -400 by -50 to get 8.
5+15=8-5+\sqrt{8^{2}+15^{2}}
Substitute 8 for x in the equation 5+15=x-5+\sqrt{x^{2}+15^{2}}.
20=20
Simplify. The value x=8 satisfies the equation.
x=8
Equation 25-x=\sqrt{x^{2}+225} has a unique solution.