Solve for x
x=8
Graph
Share
Copied to clipboard
5+15-\left(x-5\right)=\sqrt{x^{2}+15^{2}}
Subtract x-5 from both sides of the equation.
20-\left(x-5\right)=\sqrt{x^{2}+15^{2}}
Add 5 and 15 to get 20.
20-x+5=\sqrt{x^{2}+15^{2}}
To find the opposite of x-5, find the opposite of each term.
25-x=\sqrt{x^{2}+15^{2}}
Add 20 and 5 to get 25.
25-x=\sqrt{x^{2}+225}
Calculate 15 to the power of 2 and get 225.
\left(25-x\right)^{2}=\left(\sqrt{x^{2}+225}\right)^{2}
Square both sides of the equation.
625-50x+x^{2}=\left(\sqrt{x^{2}+225}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(25-x\right)^{2}.
625-50x+x^{2}=x^{2}+225
Calculate \sqrt{x^{2}+225} to the power of 2 and get x^{2}+225.
625-50x+x^{2}-x^{2}=225
Subtract x^{2} from both sides.
625-50x=225
Combine x^{2} and -x^{2} to get 0.
-50x=225-625
Subtract 625 from both sides.
-50x=-400
Subtract 625 from 225 to get -400.
x=\frac{-400}{-50}
Divide both sides by -50.
x=8
Divide -400 by -50 to get 8.
5+15=8-5+\sqrt{8^{2}+15^{2}}
Substitute 8 for x in the equation 5+15=x-5+\sqrt{x^{2}+15^{2}}.
20=20
Simplify. The value x=8 satisfies the equation.
x=8
Equation 25-x=\sqrt{x^{2}+225} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}