Solve for z
z=-9
z=\frac{1}{5}=0.2
Share
Copied to clipboard
5z^{2}-9=-44z
Subtract 9 from both sides.
5z^{2}-9+44z=0
Add 44z to both sides.
5z^{2}+44z-9=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=44 ab=5\left(-9\right)=-45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5z^{2}+az+bz-9. To find a and b, set up a system to be solved.
-1,45 -3,15 -5,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -45.
-1+45=44 -3+15=12 -5+9=4
Calculate the sum for each pair.
a=-1 b=45
The solution is the pair that gives sum 44.
\left(5z^{2}-z\right)+\left(45z-9\right)
Rewrite 5z^{2}+44z-9 as \left(5z^{2}-z\right)+\left(45z-9\right).
z\left(5z-1\right)+9\left(5z-1\right)
Factor out z in the first and 9 in the second group.
\left(5z-1\right)\left(z+9\right)
Factor out common term 5z-1 by using distributive property.
z=\frac{1}{5} z=-9
To find equation solutions, solve 5z-1=0 and z+9=0.
5z^{2}-9=-44z
Subtract 9 from both sides.
5z^{2}-9+44z=0
Add 44z to both sides.
5z^{2}+44z-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-44±\sqrt{44^{2}-4\times 5\left(-9\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 44 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-44±\sqrt{1936-4\times 5\left(-9\right)}}{2\times 5}
Square 44.
z=\frac{-44±\sqrt{1936-20\left(-9\right)}}{2\times 5}
Multiply -4 times 5.
z=\frac{-44±\sqrt{1936+180}}{2\times 5}
Multiply -20 times -9.
z=\frac{-44±\sqrt{2116}}{2\times 5}
Add 1936 to 180.
z=\frac{-44±46}{2\times 5}
Take the square root of 2116.
z=\frac{-44±46}{10}
Multiply 2 times 5.
z=\frac{2}{10}
Now solve the equation z=\frac{-44±46}{10} when ± is plus. Add -44 to 46.
z=\frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
z=-\frac{90}{10}
Now solve the equation z=\frac{-44±46}{10} when ± is minus. Subtract 46 from -44.
z=-9
Divide -90 by 10.
z=\frac{1}{5} z=-9
The equation is now solved.
5z^{2}+44z=9
Add 44z to both sides.
\frac{5z^{2}+44z}{5}=\frac{9}{5}
Divide both sides by 5.
z^{2}+\frac{44}{5}z=\frac{9}{5}
Dividing by 5 undoes the multiplication by 5.
z^{2}+\frac{44}{5}z+\left(\frac{22}{5}\right)^{2}=\frac{9}{5}+\left(\frac{22}{5}\right)^{2}
Divide \frac{44}{5}, the coefficient of the x term, by 2 to get \frac{22}{5}. Then add the square of \frac{22}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\frac{44}{5}z+\frac{484}{25}=\frac{9}{5}+\frac{484}{25}
Square \frac{22}{5} by squaring both the numerator and the denominator of the fraction.
z^{2}+\frac{44}{5}z+\frac{484}{25}=\frac{529}{25}
Add \frac{9}{5} to \frac{484}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z+\frac{22}{5}\right)^{2}=\frac{529}{25}
Factor z^{2}+\frac{44}{5}z+\frac{484}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{22}{5}\right)^{2}}=\sqrt{\frac{529}{25}}
Take the square root of both sides of the equation.
z+\frac{22}{5}=\frac{23}{5} z+\frac{22}{5}=-\frac{23}{5}
Simplify.
z=\frac{1}{5} z=-9
Subtract \frac{22}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}