Solve for y
y=-\frac{4}{5}=-0.8
y=-1
Graph
Share
Copied to clipboard
5y^{2}+4+9y=0
Add 9y to both sides.
5y^{2}+9y+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=9 ab=5\times 4=20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5y^{2}+ay+by+4. To find a and b, set up a system to be solved.
1,20 2,10 4,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 20.
1+20=21 2+10=12 4+5=9
Calculate the sum for each pair.
a=4 b=5
The solution is the pair that gives sum 9.
\left(5y^{2}+4y\right)+\left(5y+4\right)
Rewrite 5y^{2}+9y+4 as \left(5y^{2}+4y\right)+\left(5y+4\right).
y\left(5y+4\right)+5y+4
Factor out y in 5y^{2}+4y.
\left(5y+4\right)\left(y+1\right)
Factor out common term 5y+4 by using distributive property.
y=-\frac{4}{5} y=-1
To find equation solutions, solve 5y+4=0 and y+1=0.
5y^{2}+4+9y=0
Add 9y to both sides.
5y^{2}+9y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-9±\sqrt{9^{2}-4\times 5\times 4}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 9 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-9±\sqrt{81-4\times 5\times 4}}{2\times 5}
Square 9.
y=\frac{-9±\sqrt{81-20\times 4}}{2\times 5}
Multiply -4 times 5.
y=\frac{-9±\sqrt{81-80}}{2\times 5}
Multiply -20 times 4.
y=\frac{-9±\sqrt{1}}{2\times 5}
Add 81 to -80.
y=\frac{-9±1}{2\times 5}
Take the square root of 1.
y=\frac{-9±1}{10}
Multiply 2 times 5.
y=-\frac{8}{10}
Now solve the equation y=\frac{-9±1}{10} when ± is plus. Add -9 to 1.
y=-\frac{4}{5}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
y=-\frac{10}{10}
Now solve the equation y=\frac{-9±1}{10} when ± is minus. Subtract 1 from -9.
y=-1
Divide -10 by 10.
y=-\frac{4}{5} y=-1
The equation is now solved.
5y^{2}+4+9y=0
Add 9y to both sides.
5y^{2}+9y=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{5y^{2}+9y}{5}=-\frac{4}{5}
Divide both sides by 5.
y^{2}+\frac{9}{5}y=-\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}+\frac{9}{5}y+\left(\frac{9}{10}\right)^{2}=-\frac{4}{5}+\left(\frac{9}{10}\right)^{2}
Divide \frac{9}{5}, the coefficient of the x term, by 2 to get \frac{9}{10}. Then add the square of \frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{9}{5}y+\frac{81}{100}=-\frac{4}{5}+\frac{81}{100}
Square \frac{9}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{9}{5}y+\frac{81}{100}=\frac{1}{100}
Add -\frac{4}{5} to \frac{81}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{9}{10}\right)^{2}=\frac{1}{100}
Factor y^{2}+\frac{9}{5}y+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{9}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
Take the square root of both sides of the equation.
y+\frac{9}{10}=\frac{1}{10} y+\frac{9}{10}=-\frac{1}{10}
Simplify.
y=-\frac{4}{5} y=-1
Subtract \frac{9}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}