Solve for x
x=\frac{5x_{2}}{8}-\frac{1}{2}
Solve for x_2
x_{2}=\frac{8x+4}{5}
Graph
Share
Copied to clipboard
-8x-4=-5x_{2}
Subtract 5x_{2} from both sides. Anything subtracted from zero gives its negation.
-8x=-5x_{2}+4
Add 4 to both sides.
-8x=4-5x_{2}
The equation is in standard form.
\frac{-8x}{-8}=\frac{4-5x_{2}}{-8}
Divide both sides by -8.
x=\frac{4-5x_{2}}{-8}
Dividing by -8 undoes the multiplication by -8.
x=\frac{5x_{2}}{8}-\frac{1}{2}
Divide -5x_{2}+4 by -8.
5x_{2}-4=8x
Add 8x to both sides. Anything plus zero gives itself.
5x_{2}=8x+4
Add 4 to both sides.
\frac{5x_{2}}{5}=\frac{8x+4}{5}
Divide both sides by 5.
x_{2}=\frac{8x+4}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}