Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(5-2x\right)
Factor out x.
-2x^{2}+5x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±5}{2\left(-2\right)}
Take the square root of 5^{2}.
x=\frac{-5±5}{-4}
Multiply 2 times -2.
x=\frac{0}{-4}
Now solve the equation x=\frac{-5±5}{-4} when ± is plus. Add -5 to 5.
x=0
Divide 0 by -4.
x=-\frac{10}{-4}
Now solve the equation x=\frac{-5±5}{-4} when ± is minus. Subtract 5 from -5.
x=\frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out 2.
-2x^{2}+5x=-2x\left(x-\frac{5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{5}{2} for x_{2}.
-2x^{2}+5x=-2x\times \frac{-2x+5}{-2}
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-2x^{2}+5x=x\left(-2x+5\right)
Cancel out 2, the greatest common factor in -2 and -2.