Solve for x
x\geq \frac{4}{9}
Graph
Share
Copied to clipboard
5x-6x+8\leq 4\left(2x-3\left(1-3x\right)\right)
Use the distributive property to multiply -2 by 3x-4.
-x+8\leq 4\left(2x-3\left(1-3x\right)\right)
Combine 5x and -6x to get -x.
-x+8\leq 4\left(2x-3+9x\right)
Use the distributive property to multiply -3 by 1-3x.
-x+8\leq 4\left(11x-3\right)
Combine 2x and 9x to get 11x.
-x+8\leq 44x-12
Use the distributive property to multiply 4 by 11x-3.
-x+8-44x\leq -12
Subtract 44x from both sides.
-45x+8\leq -12
Combine -x and -44x to get -45x.
-45x\leq -12-8
Subtract 8 from both sides.
-45x\leq -20
Subtract 8 from -12 to get -20.
x\geq \frac{-20}{-45}
Divide both sides by -45. Since -45 is negative, the inequality direction is changed.
x\geq \frac{4}{9}
Reduce the fraction \frac{-20}{-45} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}