Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-\left(x^{2}-4x+4\right)-3\left(2x+5\right)=4\left(-1\right)-\left(x-1\right)\left(x+1\right)+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
5x-x^{2}+4x-4-3\left(2x+5\right)=4\left(-1\right)-\left(x-1\right)\left(x+1\right)+5
To find the opposite of x^{2}-4x+4, find the opposite of each term.
9x-x^{2}-4-3\left(2x+5\right)=4\left(-1\right)-\left(x-1\right)\left(x+1\right)+5
Combine 5x and 4x to get 9x.
9x-x^{2}-4-6x-15=4\left(-1\right)-\left(x-1\right)\left(x+1\right)+5
Use the distributive property to multiply -3 by 2x+5.
3x-x^{2}-4-15=4\left(-1\right)-\left(x-1\right)\left(x+1\right)+5
Combine 9x and -6x to get 3x.
3x-x^{2}-19=4\left(-1\right)-\left(x-1\right)\left(x+1\right)+5
Subtract 15 from -4 to get -19.
3x-x^{2}-19=-4-\left(x-1\right)\left(x+1\right)+5
Multiply 4 and -1 to get -4.
3x-x^{2}-19=-4-\left(x^{2}-1\right)+5
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3x-x^{2}-19=-4-x^{2}+1+5
To find the opposite of x^{2}-1, find the opposite of each term.
3x-x^{2}-19=-3-x^{2}+5
Add -4 and 1 to get -3.
3x-x^{2}-19=2-x^{2}
Add -3 and 5 to get 2.
3x-x^{2}-19+x^{2}=2
Add x^{2} to both sides.
3x-19=2
Combine -x^{2} and x^{2} to get 0.
3x=2+19
Add 19 to both sides.
3x=21
Add 2 and 19 to get 21.
x=\frac{21}{3}
Divide both sides by 3.
x=7
Divide 21 by 3 to get 7.