Solve for x
x=-20
x=15
Graph
Share
Copied to clipboard
5x^{2}+25x=1500
Use the distributive property to multiply 5x by x+5.
5x^{2}+25x-1500=0
Subtract 1500 from both sides.
x=\frac{-25±\sqrt{25^{2}-4\times 5\left(-1500\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 25 for b, and -1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 5\left(-1500\right)}}{2\times 5}
Square 25.
x=\frac{-25±\sqrt{625-20\left(-1500\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-25±\sqrt{625+30000}}{2\times 5}
Multiply -20 times -1500.
x=\frac{-25±\sqrt{30625}}{2\times 5}
Add 625 to 30000.
x=\frac{-25±175}{2\times 5}
Take the square root of 30625.
x=\frac{-25±175}{10}
Multiply 2 times 5.
x=\frac{150}{10}
Now solve the equation x=\frac{-25±175}{10} when ± is plus. Add -25 to 175.
x=15
Divide 150 by 10.
x=-\frac{200}{10}
Now solve the equation x=\frac{-25±175}{10} when ± is minus. Subtract 175 from -25.
x=-20
Divide -200 by 10.
x=15 x=-20
The equation is now solved.
5x^{2}+25x=1500
Use the distributive property to multiply 5x by x+5.
\frac{5x^{2}+25x}{5}=\frac{1500}{5}
Divide both sides by 5.
x^{2}+\frac{25}{5}x=\frac{1500}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+5x=\frac{1500}{5}
Divide 25 by 5.
x^{2}+5x=300
Divide 1500 by 5.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=300+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=300+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{1225}{4}
Add 300 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{35}{2} x+\frac{5}{2}=-\frac{35}{2}
Simplify.
x=15 x=-20
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}