Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

240x-40x^{2}=180
Use the distributive property to multiply 5x by 48-8x.
240x-40x^{2}-180=0
Subtract 180 from both sides.
-40x^{2}+240x-180=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-240±\sqrt{240^{2}-4\left(-40\right)\left(-180\right)}}{2\left(-40\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -40 for a, 240 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-240±\sqrt{57600-4\left(-40\right)\left(-180\right)}}{2\left(-40\right)}
Square 240.
x=\frac{-240±\sqrt{57600+160\left(-180\right)}}{2\left(-40\right)}
Multiply -4 times -40.
x=\frac{-240±\sqrt{57600-28800}}{2\left(-40\right)}
Multiply 160 times -180.
x=\frac{-240±\sqrt{28800}}{2\left(-40\right)}
Add 57600 to -28800.
x=\frac{-240±120\sqrt{2}}{2\left(-40\right)}
Take the square root of 28800.
x=\frac{-240±120\sqrt{2}}{-80}
Multiply 2 times -40.
x=\frac{120\sqrt{2}-240}{-80}
Now solve the equation x=\frac{-240±120\sqrt{2}}{-80} when ± is plus. Add -240 to 120\sqrt{2}.
x=-\frac{3\sqrt{2}}{2}+3
Divide -240+120\sqrt{2} by -80.
x=\frac{-120\sqrt{2}-240}{-80}
Now solve the equation x=\frac{-240±120\sqrt{2}}{-80} when ± is minus. Subtract 120\sqrt{2} from -240.
x=\frac{3\sqrt{2}}{2}+3
Divide -240-120\sqrt{2} by -80.
x=-\frac{3\sqrt{2}}{2}+3 x=\frac{3\sqrt{2}}{2}+3
The equation is now solved.
240x-40x^{2}=180
Use the distributive property to multiply 5x by 48-8x.
-40x^{2}+240x=180
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-40x^{2}+240x}{-40}=\frac{180}{-40}
Divide both sides by -40.
x^{2}+\frac{240}{-40}x=\frac{180}{-40}
Dividing by -40 undoes the multiplication by -40.
x^{2}-6x=\frac{180}{-40}
Divide 240 by -40.
x^{2}-6x=-\frac{9}{2}
Reduce the fraction \frac{180}{-40} to lowest terms by extracting and canceling out 20.
x^{2}-6x+\left(-3\right)^{2}=-\frac{9}{2}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{9}{2}+9
Square -3.
x^{2}-6x+9=\frac{9}{2}
Add -\frac{9}{2} to 9.
\left(x-3\right)^{2}=\frac{9}{2}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{9}{2}}
Take the square root of both sides of the equation.
x-3=\frac{3\sqrt{2}}{2} x-3=-\frac{3\sqrt{2}}{2}
Simplify.
x=\frac{3\sqrt{2}}{2}+3 x=-\frac{3\sqrt{2}}{2}+3
Add 3 to both sides of the equation.