Solve for x
x=-1
x=2
Graph
Share
Copied to clipboard
5x^{2}-5x-30+20=0
Add 20 to both sides.
5x^{2}-5x-10=0
Add -30 and 20 to get -10.
x^{2}-x-2=0
Divide both sides by 5.
a+b=-1 ab=1\left(-2\right)=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(x-2\right)
Rewrite x^{2}-x-2 as \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Factor out x in x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Factor out common term x-2 by using distributive property.
x=2 x=-1
To find equation solutions, solve x-2=0 and x+1=0.
5x^{2}-5x-30=-20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}-5x-30-\left(-20\right)=-20-\left(-20\right)
Add 20 to both sides of the equation.
5x^{2}-5x-30-\left(-20\right)=0
Subtracting -20 from itself leaves 0.
5x^{2}-5x-10=0
Subtract -20 from -30.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\left(-10\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -5 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5\left(-10\right)}}{2\times 5}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-20\left(-10\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-5\right)±\sqrt{25+200}}{2\times 5}
Multiply -20 times -10.
x=\frac{-\left(-5\right)±\sqrt{225}}{2\times 5}
Add 25 to 200.
x=\frac{-\left(-5\right)±15}{2\times 5}
Take the square root of 225.
x=\frac{5±15}{2\times 5}
The opposite of -5 is 5.
x=\frac{5±15}{10}
Multiply 2 times 5.
x=\frac{20}{10}
Now solve the equation x=\frac{5±15}{10} when ± is plus. Add 5 to 15.
x=2
Divide 20 by 10.
x=-\frac{10}{10}
Now solve the equation x=\frac{5±15}{10} when ± is minus. Subtract 15 from 5.
x=-1
Divide -10 by 10.
x=2 x=-1
The equation is now solved.
5x^{2}-5x-30=-20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-5x-30-\left(-30\right)=-20-\left(-30\right)
Add 30 to both sides of the equation.
5x^{2}-5x=-20-\left(-30\right)
Subtracting -30 from itself leaves 0.
5x^{2}-5x=10
Subtract -30 from -20.
\frac{5x^{2}-5x}{5}=\frac{10}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{5}{5}\right)x=\frac{10}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-x=\frac{10}{5}
Divide -5 by 5.
x^{2}-x=2
Divide 10 by 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Add 2 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Simplify.
x=2 x=-1
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}