Solve for y
y=-\frac{x\left(5x+1\right)}{1-3x}
x\neq \frac{1}{3}
Solve for x (complex solution)
x=\frac{\sqrt{9y^{2}-26y+1}+3y-1}{10}
x=\frac{-\sqrt{9y^{2}-26y+1}+3y-1}{10}
Solve for x
x=\frac{\sqrt{9y^{2}-26y+1}+3y-1}{10}
x=\frac{-\sqrt{9y^{2}-26y+1}+3y-1}{10}\text{, }y\geq \frac{4\sqrt{10}+13}{9}\text{ or }y\leq \frac{13-4\sqrt{10}}{9}
Graph
Share
Copied to clipboard
-3xy+x+y=-5x^{2}
Subtract 5x^{2} from both sides. Anything subtracted from zero gives its negation.
-3xy+y=-5x^{2}-x
Subtract x from both sides.
\left(-3x+1\right)y=-5x^{2}-x
Combine all terms containing y.
\left(1-3x\right)y=-5x^{2}-x
The equation is in standard form.
\frac{\left(1-3x\right)y}{1-3x}=-\frac{x\left(5x+1\right)}{1-3x}
Divide both sides by -3x+1.
y=-\frac{x\left(5x+1\right)}{1-3x}
Dividing by -3x+1 undoes the multiplication by -3x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}