Solve for x
x=-\frac{1}{5}=-0.2
x=6
Graph
Share
Copied to clipboard
5x^{2}-29x-6=0
Subtract 6 from both sides.
a+b=-29 ab=5\left(-6\right)=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-30 b=1
The solution is the pair that gives sum -29.
\left(5x^{2}-30x\right)+\left(x-6\right)
Rewrite 5x^{2}-29x-6 as \left(5x^{2}-30x\right)+\left(x-6\right).
5x\left(x-6\right)+x-6
Factor out 5x in 5x^{2}-30x.
\left(x-6\right)\left(5x+1\right)
Factor out common term x-6 by using distributive property.
x=6 x=-\frac{1}{5}
To find equation solutions, solve x-6=0 and 5x+1=0.
5x^{2}-29x=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}-29x-6=6-6
Subtract 6 from both sides of the equation.
5x^{2}-29x-6=0
Subtracting 6 from itself leaves 0.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 5\left(-6\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -29 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 5\left(-6\right)}}{2\times 5}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841-20\left(-6\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-29\right)±\sqrt{841+120}}{2\times 5}
Multiply -20 times -6.
x=\frac{-\left(-29\right)±\sqrt{961}}{2\times 5}
Add 841 to 120.
x=\frac{-\left(-29\right)±31}{2\times 5}
Take the square root of 961.
x=\frac{29±31}{2\times 5}
The opposite of -29 is 29.
x=\frac{29±31}{10}
Multiply 2 times 5.
x=\frac{60}{10}
Now solve the equation x=\frac{29±31}{10} when ± is plus. Add 29 to 31.
x=6
Divide 60 by 10.
x=-\frac{2}{10}
Now solve the equation x=\frac{29±31}{10} when ± is minus. Subtract 31 from 29.
x=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
x=6 x=-\frac{1}{5}
The equation is now solved.
5x^{2}-29x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-29x}{5}=\frac{6}{5}
Divide both sides by 5.
x^{2}-\frac{29}{5}x=\frac{6}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{29}{5}x+\left(-\frac{29}{10}\right)^{2}=\frac{6}{5}+\left(-\frac{29}{10}\right)^{2}
Divide -\frac{29}{5}, the coefficient of the x term, by 2 to get -\frac{29}{10}. Then add the square of -\frac{29}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{5}x+\frac{841}{100}=\frac{6}{5}+\frac{841}{100}
Square -\frac{29}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{5}x+\frac{841}{100}=\frac{961}{100}
Add \frac{6}{5} to \frac{841}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{29}{10}\right)^{2}=\frac{961}{100}
Factor x^{2}-\frac{29}{5}x+\frac{841}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{10}\right)^{2}}=\sqrt{\frac{961}{100}}
Take the square root of both sides of the equation.
x-\frac{29}{10}=\frac{31}{10} x-\frac{29}{10}=-\frac{31}{10}
Simplify.
x=6 x=-\frac{1}{5}
Add \frac{29}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}