Solve for x (complex solution)
x=\frac{-2+\sqrt{21}i}{5}\approx -0.4+0.916515139i
x=\frac{-\sqrt{21}i-2}{5}\approx -0.4-0.916515139i
Graph
Share
Copied to clipboard
5x^{2}+4x+3=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+4x+3-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
5x^{2}+4x+3-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
5x^{2}+4x+5=0
Subtract -2 from 3.
x=\frac{-4±\sqrt{4^{2}-4\times 5\times 5}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 4 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 5\times 5}}{2\times 5}
Square 4.
x=\frac{-4±\sqrt{16-20\times 5}}{2\times 5}
Multiply -4 times 5.
x=\frac{-4±\sqrt{16-100}}{2\times 5}
Multiply -20 times 5.
x=\frac{-4±\sqrt{-84}}{2\times 5}
Add 16 to -100.
x=\frac{-4±2\sqrt{21}i}{2\times 5}
Take the square root of -84.
x=\frac{-4±2\sqrt{21}i}{10}
Multiply 2 times 5.
x=\frac{-4+2\sqrt{21}i}{10}
Now solve the equation x=\frac{-4±2\sqrt{21}i}{10} when ± is plus. Add -4 to 2i\sqrt{21}.
x=\frac{-2+\sqrt{21}i}{5}
Divide -4+2i\sqrt{21} by 10.
x=\frac{-2\sqrt{21}i-4}{10}
Now solve the equation x=\frac{-4±2\sqrt{21}i}{10} when ± is minus. Subtract 2i\sqrt{21} from -4.
x=\frac{-\sqrt{21}i-2}{5}
Divide -4-2i\sqrt{21} by 10.
x=\frac{-2+\sqrt{21}i}{5} x=\frac{-\sqrt{21}i-2}{5}
The equation is now solved.
5x^{2}+4x+3=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+4x+3-3=-2-3
Subtract 3 from both sides of the equation.
5x^{2}+4x=-2-3
Subtracting 3 from itself leaves 0.
5x^{2}+4x=-5
Subtract 3 from -2.
\frac{5x^{2}+4x}{5}=-\frac{5}{5}
Divide both sides by 5.
x^{2}+\frac{4}{5}x=-\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{4}{5}x=-1
Divide -5 by 5.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=-1+\left(\frac{2}{5}\right)^{2}
Divide \frac{4}{5}, the coefficient of the x term, by 2 to get \frac{2}{5}. Then add the square of \frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{5}x+\frac{4}{25}=-1+\frac{4}{25}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{5}x+\frac{4}{25}=-\frac{21}{25}
Add -1 to \frac{4}{25}.
\left(x+\frac{2}{5}\right)^{2}=-\frac{21}{25}
Factor x^{2}+\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{-\frac{21}{25}}
Take the square root of both sides of the equation.
x+\frac{2}{5}=\frac{\sqrt{21}i}{5} x+\frac{2}{5}=-\frac{\sqrt{21}i}{5}
Simplify.
x=\frac{-2+\sqrt{21}i}{5} x=\frac{-\sqrt{21}i-2}{5}
Subtract \frac{2}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}