Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+36-13x^{2}=0
Subtract 13x^{2} from both sides.
-8x^{2}+36=0
Combine 5x^{2} and -13x^{2} to get -8x^{2}.
-8x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-36}{-8}
Divide both sides by -8.
x^{2}=\frac{9}{2}
Reduce the fraction \frac{-36}{-8} to lowest terms by extracting and canceling out -4.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Take the square root of both sides of the equation.
5x^{2}+36-13x^{2}=0
Subtract 13x^{2} from both sides.
-8x^{2}+36=0
Combine 5x^{2} and -13x^{2} to get -8x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-8\right)\times 36}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-8\right)\times 36}}{2\left(-8\right)}
Square 0.
x=\frac{0±\sqrt{32\times 36}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{0±\sqrt{1152}}{2\left(-8\right)}
Multiply 32 times 36.
x=\frac{0±24\sqrt{2}}{2\left(-8\right)}
Take the square root of 1152.
x=\frac{0±24\sqrt{2}}{-16}
Multiply 2 times -8.
x=-\frac{3\sqrt{2}}{2}
Now solve the equation x=\frac{0±24\sqrt{2}}{-16} when ± is plus.
x=\frac{3\sqrt{2}}{2}
Now solve the equation x=\frac{0±24\sqrt{2}}{-16} when ± is minus.
x=-\frac{3\sqrt{2}}{2} x=\frac{3\sqrt{2}}{2}
The equation is now solved.