Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+\frac{4}{3}x=\frac{4}{15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+\frac{4}{3}x-\frac{4}{15}=\frac{4}{15}-\frac{4}{15}
Subtract \frac{4}{15} from both sides of the equation.
5x^{2}+\frac{4}{3}x-\frac{4}{15}=0
Subtracting \frac{4}{15} from itself leaves 0.
x=\frac{-\frac{4}{3}±\sqrt{\left(\frac{4}{3}\right)^{2}-4\times 5\left(-\frac{4}{15}\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, \frac{4}{3} for b, and -\frac{4}{15} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-4\times 5\left(-\frac{4}{15}\right)}}{2\times 5}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-20\left(-\frac{4}{15}\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}+\frac{16}{3}}}{2\times 5}
Multiply -20 times -\frac{4}{15}.
x=\frac{-\frac{4}{3}±\sqrt{\frac{64}{9}}}{2\times 5}
Add \frac{16}{9} to \frac{16}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{4}{3}±\frac{8}{3}}{2\times 5}
Take the square root of \frac{64}{9}.
x=\frac{-\frac{4}{3}±\frac{8}{3}}{10}
Multiply 2 times 5.
x=\frac{\frac{4}{3}}{10}
Now solve the equation x=\frac{-\frac{4}{3}±\frac{8}{3}}{10} when ± is plus. Add -\frac{4}{3} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{15}
Divide \frac{4}{3} by 10.
x=-\frac{4}{10}
Now solve the equation x=\frac{-\frac{4}{3}±\frac{8}{3}}{10} when ± is minus. Subtract \frac{8}{3} from -\frac{4}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
x=\frac{2}{15} x=-\frac{2}{5}
The equation is now solved.
5x^{2}+\frac{4}{3}x=\frac{4}{15}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+\frac{4}{3}x}{5}=\frac{\frac{4}{15}}{5}
Divide both sides by 5.
x^{2}+\frac{\frac{4}{3}}{5}x=\frac{\frac{4}{15}}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{4}{15}x=\frac{\frac{4}{15}}{5}
Divide \frac{4}{3} by 5.
x^{2}+\frac{4}{15}x=\frac{4}{75}
Divide \frac{4}{15} by 5.
x^{2}+\frac{4}{15}x+\left(\frac{2}{15}\right)^{2}=\frac{4}{75}+\left(\frac{2}{15}\right)^{2}
Divide \frac{4}{15}, the coefficient of the x term, by 2 to get \frac{2}{15}. Then add the square of \frac{2}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{15}x+\frac{4}{225}=\frac{4}{75}+\frac{4}{225}
Square \frac{2}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{15}x+\frac{4}{225}=\frac{16}{225}
Add \frac{4}{75} to \frac{4}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{15}\right)^{2}=\frac{16}{225}
Factor x^{2}+\frac{4}{15}x+\frac{4}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{15}\right)^{2}}=\sqrt{\frac{16}{225}}
Take the square root of both sides of the equation.
x+\frac{2}{15}=\frac{4}{15} x+\frac{2}{15}=-\frac{4}{15}
Simplify.
x=\frac{2}{15} x=-\frac{2}{5}
Subtract \frac{2}{15} from both sides of the equation.