Solve for x
x=\frac{2\sqrt{42}}{21}\approx 0.6172134
Graph
Share
Copied to clipboard
\left(5x\right)^{2}=\left(\sqrt{4x^{2}+8}\right)^{2}
Square both sides of the equation.
5^{2}x^{2}=\left(\sqrt{4x^{2}+8}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(\sqrt{4x^{2}+8}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=4x^{2}+8
Calculate \sqrt{4x^{2}+8} to the power of 2 and get 4x^{2}+8.
25x^{2}-4x^{2}=8
Subtract 4x^{2} from both sides.
21x^{2}=8
Combine 25x^{2} and -4x^{2} to get 21x^{2}.
x^{2}=\frac{8}{21}
Divide both sides by 21.
x=\frac{2\sqrt{42}}{21} x=-\frac{2\sqrt{42}}{21}
Take the square root of both sides of the equation.
5\times \frac{2\sqrt{42}}{21}=\sqrt{4\times \left(\frac{2\sqrt{42}}{21}\right)^{2}+8}
Substitute \frac{2\sqrt{42}}{21} for x in the equation 5x=\sqrt{4x^{2}+8}.
\frac{10}{21}\times 42^{\frac{1}{2}}=\frac{10}{21}\times 42^{\frac{1}{2}}
Simplify. The value x=\frac{2\sqrt{42}}{21} satisfies the equation.
5\left(-\frac{2\sqrt{42}}{21}\right)=\sqrt{4\left(-\frac{2\sqrt{42}}{21}\right)^{2}+8}
Substitute -\frac{2\sqrt{42}}{21} for x in the equation 5x=\sqrt{4x^{2}+8}.
-\frac{10}{21}\times 42^{\frac{1}{2}}=\frac{10}{21}\times 42^{\frac{1}{2}}
Simplify. The value x=-\frac{2\sqrt{42}}{21} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{2\sqrt{42}}{21}
Equation 5x=\sqrt{4x^{2}+8} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}