Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+5-4x^{2}=0
Subtract 4x^{2} from both sides.
-4x^{2}+5x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-4\right)\times 5}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 5 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-4\right)\times 5}}{2\left(-4\right)}
Square 5.
x=\frac{-5±\sqrt{25+16\times 5}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-5±\sqrt{25+80}}{2\left(-4\right)}
Multiply 16 times 5.
x=\frac{-5±\sqrt{105}}{2\left(-4\right)}
Add 25 to 80.
x=\frac{-5±\sqrt{105}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{105}-5}{-8}
Now solve the equation x=\frac{-5±\sqrt{105}}{-8} when ± is plus. Add -5 to \sqrt{105}.
x=\frac{5-\sqrt{105}}{8}
Divide -5+\sqrt{105} by -8.
x=\frac{-\sqrt{105}-5}{-8}
Now solve the equation x=\frac{-5±\sqrt{105}}{-8} when ± is minus. Subtract \sqrt{105} from -5.
x=\frac{\sqrt{105}+5}{8}
Divide -5-\sqrt{105} by -8.
x=\frac{5-\sqrt{105}}{8} x=\frac{\sqrt{105}+5}{8}
The equation is now solved.
5x+5-4x^{2}=0
Subtract 4x^{2} from both sides.
5x-4x^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-4x^{2}+5x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+5x}{-4}=-\frac{5}{-4}
Divide both sides by -4.
x^{2}+\frac{5}{-4}x=-\frac{5}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{5}{4}x=-\frac{5}{-4}
Divide 5 by -4.
x^{2}-\frac{5}{4}x=\frac{5}{4}
Divide -5 by -4.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=\frac{5}{4}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{5}{4}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{105}{64}
Add \frac{5}{4} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{8}\right)^{2}=\frac{105}{64}
Factor x^{2}-\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{105}{64}}
Take the square root of both sides of the equation.
x-\frac{5}{8}=\frac{\sqrt{105}}{8} x-\frac{5}{8}=-\frac{\sqrt{105}}{8}
Simplify.
x=\frac{\sqrt{105}+5}{8} x=\frac{5-\sqrt{105}}{8}
Add \frac{5}{8} to both sides of the equation.