Solve for x
x=\frac{11}{4y+5}
y\neq -\frac{5}{4}
Solve for y
y=-\frac{5}{4}+\frac{11}{4x}
x\neq 0
Graph
Share
Copied to clipboard
\left(5+4y\right)x=11
Combine all terms containing x.
\left(4y+5\right)x=11
The equation is in standard form.
\frac{\left(4y+5\right)x}{4y+5}=\frac{11}{4y+5}
Divide both sides by 5+4y.
x=\frac{11}{4y+5}
Dividing by 5+4y undoes the multiplication by 5+4y.
4xy=11-5x
Subtract 5x from both sides.
\frac{4xy}{4x}=\frac{11-5x}{4x}
Divide both sides by 4x.
y=\frac{11-5x}{4x}
Dividing by 4x undoes the multiplication by 4x.
y=-\frac{5}{4}+\frac{11}{4x}
Divide 11-5x by 4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}