Solve for x
x>-\frac{15}{4}
Graph
Share
Copied to clipboard
5x+2>3x-\frac{6}{2}-\frac{5}{2}
Convert -3 to fraction -\frac{6}{2}.
5x+2>3x+\frac{-6-5}{2}
Since -\frac{6}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
5x+2>3x-\frac{11}{2}
Subtract 5 from -6 to get -11.
5x+2-3x>-\frac{11}{2}
Subtract 3x from both sides.
2x+2>-\frac{11}{2}
Combine 5x and -3x to get 2x.
2x>-\frac{11}{2}-2
Subtract 2 from both sides.
2x>-\frac{11}{2}-\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
2x>\frac{-11-4}{2}
Since -\frac{11}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
2x>-\frac{15}{2}
Subtract 4 from -11 to get -15.
x>\frac{-\frac{15}{2}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
x>\frac{-15}{2\times 2}
Express \frac{-\frac{15}{2}}{2} as a single fraction.
x>\frac{-15}{4}
Multiply 2 and 2 to get 4.
x>-\frac{15}{4}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}