Solve for x
x = \frac{59}{25} = 2\frac{9}{25} = 2.36
Graph
Share
Copied to clipboard
5x+\frac{1}{5}=12
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
5x=12-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
5x=\frac{60}{5}-\frac{1}{5}
Convert 12 to fraction \frac{60}{5}.
5x=\frac{60-1}{5}
Since \frac{60}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
5x=\frac{59}{5}
Subtract 1 from 60 to get 59.
x=\frac{\frac{59}{5}}{5}
Divide both sides by 5.
x=\frac{59}{5\times 5}
Express \frac{\frac{59}{5}}{5} as a single fraction.
x=\frac{59}{25}
Multiply 5 and 5 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}