Solve for x
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
3x-x+6=18-\left(-\left(7x+6\right)-\left(3x-24\right)\right)
Combine 5x and -2x to get 3x.
3x-x+6=18-\left(-7x-6-\left(3x-24\right)\right)
To find the opposite of 7x+6, find the opposite of each term.
3x-x+6=18-\left(-7x-6-3x-\left(-24\right)\right)
To find the opposite of 3x-24, find the opposite of each term.
3x-x+6=18-\left(-7x-6-3x+24\right)
The opposite of -24 is 24.
3x-x+6=18-\left(-10x-6+24\right)
Combine -7x and -3x to get -10x.
3x-x+6=18-\left(-10x+18\right)
Add -6 and 24 to get 18.
3x-x+6=18-\left(-10x\right)-18
To find the opposite of -10x+18, find the opposite of each term.
3x-x+6=18+10x-18
The opposite of -10x is 10x.
3x-x+6=10x
Subtract 18 from 18 to get 0.
3x-x+6-10x=0
Subtract 10x from both sides.
-7x-x+6=0
Combine 3x and -10x to get -7x.
-7x-x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
-8x=-6
Combine -7x and -x to get -8x.
x=\frac{-6}{-8}
Divide both sides by -8.
x=\frac{3}{4}
Reduce the fraction \frac{-6}{-8} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}