Factor
5\left(u-\left(-\sqrt{6}-4\right)\right)\left(u-\left(\sqrt{6}-4\right)\right)
Evaluate
5\left(u^{2}+8u+10\right)
Share
Copied to clipboard
5u^{2}+40u+50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-40±\sqrt{40^{2}-4\times 5\times 50}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-40±\sqrt{1600-4\times 5\times 50}}{2\times 5}
Square 40.
u=\frac{-40±\sqrt{1600-20\times 50}}{2\times 5}
Multiply -4 times 5.
u=\frac{-40±\sqrt{1600-1000}}{2\times 5}
Multiply -20 times 50.
u=\frac{-40±\sqrt{600}}{2\times 5}
Add 1600 to -1000.
u=\frac{-40±10\sqrt{6}}{2\times 5}
Take the square root of 600.
u=\frac{-40±10\sqrt{6}}{10}
Multiply 2 times 5.
u=\frac{10\sqrt{6}-40}{10}
Now solve the equation u=\frac{-40±10\sqrt{6}}{10} when ± is plus. Add -40 to 10\sqrt{6}.
u=\sqrt{6}-4
Divide -40+10\sqrt{6} by 10.
u=\frac{-10\sqrt{6}-40}{10}
Now solve the equation u=\frac{-40±10\sqrt{6}}{10} when ± is minus. Subtract 10\sqrt{6} from -40.
u=-\sqrt{6}-4
Divide -40-10\sqrt{6} by 10.
5u^{2}+40u+50=5\left(u-\left(\sqrt{6}-4\right)\right)\left(u-\left(-\sqrt{6}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4+\sqrt{6} for x_{1} and -4-\sqrt{6} for x_{2}.
x ^ 2 +8x +10 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = -8 rs = 10
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -4 - u s = -4 + u
Two numbers r and s sum up to -8 exactly when the average of the two numbers is \frac{1}{2}*-8 = -4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-4 - u) (-4 + u) = 10
To solve for unknown quantity u, substitute these in the product equation rs = 10
16 - u^2 = 10
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 10-16 = -6
Simplify the expression by subtracting 16 on both sides
u^2 = 6 u = \pm\sqrt{6} = \pm \sqrt{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-4 - \sqrt{6} = -6.449 s = -4 + \sqrt{6} = -1.551
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}