Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5u^{2}+30u-70=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-30±\sqrt{30^{2}-4\times 5\left(-70\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-30±\sqrt{900-4\times 5\left(-70\right)}}{2\times 5}
Square 30.
u=\frac{-30±\sqrt{900-20\left(-70\right)}}{2\times 5}
Multiply -4 times 5.
u=\frac{-30±\sqrt{900+1400}}{2\times 5}
Multiply -20 times -70.
u=\frac{-30±\sqrt{2300}}{2\times 5}
Add 900 to 1400.
u=\frac{-30±10\sqrt{23}}{2\times 5}
Take the square root of 2300.
u=\frac{-30±10\sqrt{23}}{10}
Multiply 2 times 5.
u=\frac{10\sqrt{23}-30}{10}
Now solve the equation u=\frac{-30±10\sqrt{23}}{10} when ± is plus. Add -30 to 10\sqrt{23}.
u=\sqrt{23}-3
Divide -30+10\sqrt{23} by 10.
u=\frac{-10\sqrt{23}-30}{10}
Now solve the equation u=\frac{-30±10\sqrt{23}}{10} when ± is minus. Subtract 10\sqrt{23} from -30.
u=-\sqrt{23}-3
Divide -30-10\sqrt{23} by 10.
5u^{2}+30u-70=5\left(u-\left(\sqrt{23}-3\right)\right)\left(u-\left(-\sqrt{23}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3+\sqrt{23} for x_{1} and -3-\sqrt{23} for x_{2}.
x ^ 2 +6x -14 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = -6 rs = -14
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -3 - u s = -3 + u
Two numbers r and s sum up to -6 exactly when the average of the two numbers is \frac{1}{2}*-6 = -3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-3 - u) (-3 + u) = -14
To solve for unknown quantity u, substitute these in the product equation rs = -14
9 - u^2 = -14
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -14-9 = -23
Simplify the expression by subtracting 9 on both sides
u^2 = 23 u = \pm\sqrt{23} = \pm \sqrt{23}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-3 - \sqrt{23} = -7.796 s = -3 + \sqrt{23} = 1.796
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.