Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

5t^{2}-\frac{4}{13}t-\frac{672}{169}=0
Subtract 4 from \frac{4}{169} to get -\frac{672}{169}.
t=\frac{-\left(-\frac{4}{13}\right)±\sqrt{\left(-\frac{4}{13}\right)^{2}-4\times 5\left(-\frac{672}{169}\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -\frac{4}{13} for b, and -\frac{672}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{4}{13}\right)±\sqrt{\frac{16}{169}-4\times 5\left(-\frac{672}{169}\right)}}{2\times 5}
Square -\frac{4}{13} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{4}{13}\right)±\sqrt{\frac{16}{169}-20\left(-\frac{672}{169}\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-\left(-\frac{4}{13}\right)±\sqrt{\frac{16+13440}{169}}}{2\times 5}
Multiply -20 times -\frac{672}{169}.
t=\frac{-\left(-\frac{4}{13}\right)±\sqrt{\frac{13456}{169}}}{2\times 5}
Add \frac{16}{169} to \frac{13440}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{4}{13}\right)±\frac{116}{13}}{2\times 5}
Take the square root of \frac{13456}{169}.
t=\frac{\frac{4}{13}±\frac{116}{13}}{2\times 5}
The opposite of -\frac{4}{13} is \frac{4}{13}.
t=\frac{\frac{4}{13}±\frac{116}{13}}{10}
Multiply 2 times 5.
t=\frac{\frac{120}{13}}{10}
Now solve the equation t=\frac{\frac{4}{13}±\frac{116}{13}}{10} when ± is plus. Add \frac{4}{13} to \frac{116}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{12}{13}
Divide \frac{120}{13} by 10.
t=-\frac{\frac{112}{13}}{10}
Now solve the equation t=\frac{\frac{4}{13}±\frac{116}{13}}{10} when ± is minus. Subtract \frac{116}{13} from \frac{4}{13} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=-\frac{56}{65}
Divide -\frac{112}{13} by 10.
t=\frac{12}{13} t=-\frac{56}{65}
The equation is now solved.
5t^{2}-\frac{4}{13}t-\frac{672}{169}=0
Subtract 4 from \frac{4}{169} to get -\frac{672}{169}.
5t^{2}-\frac{4}{13}t=\frac{672}{169}
Add \frac{672}{169} to both sides. Anything plus zero gives itself.
\frac{5t^{2}-\frac{4}{13}t}{5}=\frac{\frac{672}{169}}{5}
Divide both sides by 5.
t^{2}+\left(-\frac{\frac{4}{13}}{5}\right)t=\frac{\frac{672}{169}}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}-\frac{4}{65}t=\frac{\frac{672}{169}}{5}
Divide -\frac{4}{13} by 5.
t^{2}-\frac{4}{65}t=\frac{672}{845}
Divide \frac{672}{169} by 5.
t^{2}-\frac{4}{65}t+\left(-\frac{2}{65}\right)^{2}=\frac{672}{845}+\left(-\frac{2}{65}\right)^{2}
Divide -\frac{4}{65}, the coefficient of the x term, by 2 to get -\frac{2}{65}. Then add the square of -\frac{2}{65} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{4}{65}t+\frac{4}{4225}=\frac{672}{845}+\frac{4}{4225}
Square -\frac{2}{65} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{4}{65}t+\frac{4}{4225}=\frac{3364}{4225}
Add \frac{672}{845} to \frac{4}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{2}{65}\right)^{2}=\frac{3364}{4225}
Factor t^{2}-\frac{4}{65}t+\frac{4}{4225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{2}{65}\right)^{2}}=\sqrt{\frac{3364}{4225}}
Take the square root of both sides of the equation.
t-\frac{2}{65}=\frac{58}{65} t-\frac{2}{65}=-\frac{58}{65}
Simplify.
t=\frac{12}{13} t=-\frac{56}{65}
Add \frac{2}{65} to both sides of the equation.