Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}=\frac{32}{5}
Divide both sides by 5.
t=\frac{4\sqrt{10}}{5} t=-\frac{4\sqrt{10}}{5}
Take the square root of both sides of the equation.
t^{2}=\frac{32}{5}
Divide both sides by 5.
t^{2}-\frac{32}{5}=0
Subtract \frac{32}{5} from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{32}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{32}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{32}{5}\right)}}{2}
Square 0.
t=\frac{0±\sqrt{\frac{128}{5}}}{2}
Multiply -4 times -\frac{32}{5}.
t=\frac{0±\frac{8\sqrt{10}}{5}}{2}
Take the square root of \frac{128}{5}.
t=\frac{4\sqrt{10}}{5}
Now solve the equation t=\frac{0±\frac{8\sqrt{10}}{5}}{2} when ± is plus.
t=-\frac{4\sqrt{10}}{5}
Now solve the equation t=\frac{0±\frac{8\sqrt{10}}{5}}{2} when ± is minus.
t=\frac{4\sqrt{10}}{5} t=-\frac{4\sqrt{10}}{5}
The equation is now solved.