Solve for s
s=3
s = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Share
Copied to clipboard
5s^{2}+289-170s+25s^{2}=49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17-5s\right)^{2}.
30s^{2}+289-170s=49
Combine 5s^{2} and 25s^{2} to get 30s^{2}.
30s^{2}+289-170s-49=0
Subtract 49 from both sides.
30s^{2}+240-170s=0
Subtract 49 from 289 to get 240.
30s^{2}-170s+240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 30\times 240}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, -170 for b, and 240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-170\right)±\sqrt{28900-4\times 30\times 240}}{2\times 30}
Square -170.
s=\frac{-\left(-170\right)±\sqrt{28900-120\times 240}}{2\times 30}
Multiply -4 times 30.
s=\frac{-\left(-170\right)±\sqrt{28900-28800}}{2\times 30}
Multiply -120 times 240.
s=\frac{-\left(-170\right)±\sqrt{100}}{2\times 30}
Add 28900 to -28800.
s=\frac{-\left(-170\right)±10}{2\times 30}
Take the square root of 100.
s=\frac{170±10}{2\times 30}
The opposite of -170 is 170.
s=\frac{170±10}{60}
Multiply 2 times 30.
s=\frac{180}{60}
Now solve the equation s=\frac{170±10}{60} when ± is plus. Add 170 to 10.
s=3
Divide 180 by 60.
s=\frac{160}{60}
Now solve the equation s=\frac{170±10}{60} when ± is minus. Subtract 10 from 170.
s=\frac{8}{3}
Reduce the fraction \frac{160}{60} to lowest terms by extracting and canceling out 20.
s=3 s=\frac{8}{3}
The equation is now solved.
5s^{2}+289-170s+25s^{2}=49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(17-5s\right)^{2}.
30s^{2}+289-170s=49
Combine 5s^{2} and 25s^{2} to get 30s^{2}.
30s^{2}-170s=49-289
Subtract 289 from both sides.
30s^{2}-170s=-240
Subtract 289 from 49 to get -240.
\frac{30s^{2}-170s}{30}=-\frac{240}{30}
Divide both sides by 30.
s^{2}+\left(-\frac{170}{30}\right)s=-\frac{240}{30}
Dividing by 30 undoes the multiplication by 30.
s^{2}-\frac{17}{3}s=-\frac{240}{30}
Reduce the fraction \frac{-170}{30} to lowest terms by extracting and canceling out 10.
s^{2}-\frac{17}{3}s=-8
Divide -240 by 30.
s^{2}-\frac{17}{3}s+\left(-\frac{17}{6}\right)^{2}=-8+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}-\frac{17}{3}s+\frac{289}{36}=-8+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
s^{2}-\frac{17}{3}s+\frac{289}{36}=\frac{1}{36}
Add -8 to \frac{289}{36}.
\left(s-\frac{17}{6}\right)^{2}=\frac{1}{36}
Factor s^{2}-\frac{17}{3}s+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{17}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
s-\frac{17}{6}=\frac{1}{6} s-\frac{17}{6}=-\frac{1}{6}
Simplify.
s=3 s=\frac{8}{3}
Add \frac{17}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}