Solve for q
q=-1+\frac{3}{5u}
u\neq 0
Solve for u
u=\frac{3}{5\left(q+1\right)}
q\neq -1
Share
Copied to clipboard
5qu=3+u\left(-5\right)
Multiply both sides of the equation by u.
5uq=3-5u
The equation is in standard form.
\frac{5uq}{5u}=\frac{3-5u}{5u}
Divide both sides by 5u.
q=\frac{3-5u}{5u}
Dividing by 5u undoes the multiplication by 5u.
q=-1+\frac{3}{5u}
Divide 3-5u by 5u.
5qu=3+u\left(-5\right)
Variable u cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by u.
5qu-u\left(-5\right)=3
Subtract u\left(-5\right) from both sides.
5qu+5u=3
Multiply -1 and -5 to get 5.
\left(5q+5\right)u=3
Combine all terms containing u.
\frac{\left(5q+5\right)u}{5q+5}=\frac{3}{5q+5}
Divide both sides by 5+5q.
u=\frac{3}{5q+5}
Dividing by 5+5q undoes the multiplication by 5+5q.
u=\frac{3}{5\left(q+1\right)}
Divide 3 by 5+5q.
u=\frac{3}{5\left(q+1\right)}\text{, }u\neq 0
Variable u cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}