Solve for p
p=\frac{\sqrt{35}i}{10}+\frac{1}{2}\approx 0.5+0.591607978i
p=-\frac{\sqrt{35}i}{10}+\frac{1}{2}\approx 0.5-0.591607978i
Share
Copied to clipboard
5p-5p^{2}=3
Use the distributive property to multiply 5p by 1-p.
5p-5p^{2}-3=0
Subtract 3 from both sides.
-5p^{2}+5p-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-5±\sqrt{5^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-5±\sqrt{25-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Square 5.
p=\frac{-5±\sqrt{25+20\left(-3\right)}}{2\left(-5\right)}
Multiply -4 times -5.
p=\frac{-5±\sqrt{25-60}}{2\left(-5\right)}
Multiply 20 times -3.
p=\frac{-5±\sqrt{-35}}{2\left(-5\right)}
Add 25 to -60.
p=\frac{-5±\sqrt{35}i}{2\left(-5\right)}
Take the square root of -35.
p=\frac{-5±\sqrt{35}i}{-10}
Multiply 2 times -5.
p=\frac{-5+\sqrt{35}i}{-10}
Now solve the equation p=\frac{-5±\sqrt{35}i}{-10} when ± is plus. Add -5 to i\sqrt{35}.
p=-\frac{\sqrt{35}i}{10}+\frac{1}{2}
Divide -5+i\sqrt{35} by -10.
p=\frac{-\sqrt{35}i-5}{-10}
Now solve the equation p=\frac{-5±\sqrt{35}i}{-10} when ± is minus. Subtract i\sqrt{35} from -5.
p=\frac{\sqrt{35}i}{10}+\frac{1}{2}
Divide -5-i\sqrt{35} by -10.
p=-\frac{\sqrt{35}i}{10}+\frac{1}{2} p=\frac{\sqrt{35}i}{10}+\frac{1}{2}
The equation is now solved.
5p-5p^{2}=3
Use the distributive property to multiply 5p by 1-p.
-5p^{2}+5p=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5p^{2}+5p}{-5}=\frac{3}{-5}
Divide both sides by -5.
p^{2}+\frac{5}{-5}p=\frac{3}{-5}
Dividing by -5 undoes the multiplication by -5.
p^{2}-p=\frac{3}{-5}
Divide 5 by -5.
p^{2}-p=-\frac{3}{5}
Divide 3 by -5.
p^{2}-p+\left(-\frac{1}{2}\right)^{2}=-\frac{3}{5}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-p+\frac{1}{4}=-\frac{3}{5}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}-p+\frac{1}{4}=-\frac{7}{20}
Add -\frac{3}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{1}{2}\right)^{2}=-\frac{7}{20}
Factor p^{2}-p+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{20}}
Take the square root of both sides of the equation.
p-\frac{1}{2}=\frac{\sqrt{35}i}{10} p-\frac{1}{2}=-\frac{\sqrt{35}i}{10}
Simplify.
p=\frac{\sqrt{35}i}{10}+\frac{1}{2} p=-\frac{\sqrt{35}i}{10}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}